Multiscale Dictionary Learning: Non-Asymptotic Bounds and Robustness

نویسندگان

  • Mauro Maggioni
  • Stanislav Minsker
  • Nate Strawn
چکیده

High-dimensional datasets are well-approximated by low-dimensional structures. Over the past decade, this empirical observation motivated the investigation of detection, measurement, and modeling techniques to exploit these low-dimensional intrinsic structures, yielding numerous implications for high-dimensional statistics, machine learning, and signal processing. Manifold learning (where the low-dimensional structure is a manifold) and dictionary learning (where the low-dimensional structure is the set of sparse linear combinations of vectors from a finite dictionary) are two prominent theoretical and computational frameworks in this area. Despite their ostensible distinction, the recently-introduced Geometric Multi-Resolution Analysis (GMRA) provides a robust, computationally efficient, multiscale procedure for simultaneously learning manifolds and dictionaries. In this work, we prove non-asymptotic probabilistic bounds on the approximation error of GMRA for a rich class of data-generating statistical models that includes “noisy” manifolds, thereby establishing the theoretical robustness of the procedure and confirming empirical observations. In particular, if a dataset aggregates near a low-dimensional manifold, our results show that the approximation error of the GMRA is completely independent of the ambient dimension. Our work therefore establishes GMRA as a provably fast algorithm for dictionary learning with approximation and sparsity guarantees. We include several numerical experiments confirming these theoretical results, and our theoretical framework provides new tools for assessing the behavior of manifold learning and dictionary learning procedures on a large class of interesting models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Patterns for Detection with Multiscale Scan Statistics

This paper addresses detecting anomalous patterns in images, time-series, and tensor data when the location and scale of the pattern is unknown a priori. The multiscale scan statistic convolves the proposed pattern with the image at various scales and returns the maximum of the resulting tensor. Scale corrected multiscale scan statistics apply different standardizations at each scale, and the l...

متن کامل

BayeSian Learning of SparSe MuLtiScaLe iMage repreSentationS BayeSian Learning of SparSe MuLtiScaLe iMage repreSentationS

Multiscale representations of images have become a standard tool in image analysis. Such representations offer a number of advantages over fixed-scale methods, including the potential for improved performance in denoising, compression, and the ability to represent distinct but complementary information that exists at various scales. A variety of multiresolution transforms exist, including both ...

متن کامل

Local stability and robustness of sparse dictionary learning in the presence of noise

A popular approach within the signal processing and machine learning communities consists in modelling signals as sparse linear combinations of atoms selected from a learned dictionary. While this paradigm has led to numerous empirical successes in various fields ranging from image to audio processing, there have only been a few theoretical arguments supporting these evidences. In particular, s...

متن کامل

Learning a collaborative multiscale dictionary based on robust empirical mode decomposition

Abstract. Dictionary learning is a challenge topic in many image processing areas. The basic goal is to learn a sparse representation from an overcomplete basis set. Due to combining the advantages of generic multiscale representations with learning based adaptivity, multiscale dictionary representation approaches have the power in capturing structural characteristics of natural images. However...

متن کامل

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016